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OmniVL unifies the foundation models  in three dimensions:

• Modality: spatial-temporal transformer-based visual encoder to support both image and video inputs.

• Functionality: encoder-decoder structure with two decoders for cross-modal alignment and text generation, respectively, 

• Pretraining Data: joint visual-label-text space to unify labelled data and web-crawled data for vision-language pretraining.

Paradigms: first perform image-language pretraining and then jointly pretrain with video-language data. Two potential 

benefits: 1) applying the image data to learn spatial representation first is more efficient. 2) The decoupled pattern makes 

the multimodal representation learning more effective to make image-language and video-language benefit each other.

OmniVL achieves new state-of-the-art or at least competitive results on a wide scope of downstream tasks. When using 

ViT-Base scale model to pretrain on a moderate data scale (e.g., ∼ 14M image-text, ∼2.5M video-text), we achieve state-

of-the-art performance on image-text retrieval (82.1/64.8 R@1 on COCO for image-to-text / text-to-image), image 

captioning (39.8 BLEU@4 on COCO), text-to-video retrieval (47.8 R@1 on MSRVTT), and video question answering 

(51.9% accuracy on MSVD).


